Quantum Chemistry
   HOME

TheInfoList



OR:

Quantum chemistry, also called molecular quantum mechanics, is a branch of
physical chemistry Physical chemistry is the study of macroscopic and microscopic phenomena in chemical systems in terms of the principles, practices, and concepts of physics such as motion, energy, force, time, thermodynamics, quantum chemistry, statistical mecha ...
focused on the application of
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, ...
to chemical systems, particularly towards the quantum-mechanical calculation of electronic contributions to physical and chemical properties of
molecules A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bioche ...
,
materials Material is a substance or mixture of substances that constitutes an object. Materials can be pure or impure, living or non-living matter. Materials can be classified on the basis of their physical and chemical properties, or on their geologic ...
, and solutions at the atomic level. These calculations include systematically applied approximations intended to make calculations computationally feasible while still capturing as much information about important contributions to the computed
wave functions A wave function in quantum physics is a mathematical description of the quantum state of an isolated quantum system. The wave function is a complex-valued probability amplitude, and the probabilities for the possible results of measurements m ...
as well as to observable properties such as structures, spectra, and thermodynamic properties. Quantum chemistry is also concerned with the computation of quantum effects on
molecular dynamics Molecular dynamics (MD) is a computer simulation method for analyzing the physical movements of atoms and molecules. The atoms and molecules are allowed to interact for a fixed period of time, giving a view of the dynamic "evolution" of the ...
and
chemical kinetics Chemical kinetics, also known as reaction kinetics, is the branch of physical chemistry that is concerned with understanding the rates of chemical reactions. It is to be contrasted with chemical thermodynamics, which deals with the direction in wh ...
. Chemists rely heavily on
spectroscopy Spectroscopy is the field of study that measures and interprets the electromagnetic spectra that result from the interaction between electromagnetic radiation and matter as a function of the wavelength or frequency of the radiation. Matter wa ...
through which information regarding the quantization of energy on a molecular scale can be obtained. Common methods are infra-red (IR) spectroscopy,
nuclear magnetic resonance (NMR) spectroscopy Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. The sample is placed in a magnetic fie ...
, and
scanning probe microscopy Scan may refer to: Acronyms * Schedules for Clinical Assessment in Neuropsychiatry (SCAN), a psychiatric diagnostic tool developed by WHO * Shared Check Authorization Network (SCAN), a database of bad check writers and collection agency for bad ...
. Quantum chemistry may be applied to the prediction and verification of spectroscopic data as well as other experimental data. Many quantum chemistry studies are focused on the electronic
ground state The ground state of a quantum-mechanical system is its stationary state of lowest energy; the energy of the ground state is known as the zero-point energy of the system. An excited state is any state with energy greater than the ground state. ...
and excited states of individual atoms and molecules as well as the study of reaction pathways and
transition state In chemistry, the transition state of a chemical reaction is a particular configuration along the reaction coordinate. It is defined as the state corresponding to the highest potential energy along this reaction coordinate. It is often marked wi ...
s that occur during
chemical reaction A chemical reaction is a process that leads to the IUPAC nomenclature for organic transformations, chemical transformation of one set of chemical substances to another. Classically, chemical reactions encompass changes that only involve the pos ...
s. Spectroscopic properties may also be predicted. Typically, such studies assume the electronic wave function is adiabatically parameterized by the nuclear positions (i.e., the
Born–Oppenheimer approximation In quantum chemistry and molecular physics, the Born–Oppenheimer (BO) approximation is the best-known mathematical approximation in molecular dynamics. Specifically, it is the assumption that the wave functions of atomic nuclei and elect ...
). A wide variety of approaches are used, including
semi-empirical Empirical evidence for a proposition is evidence, i.e. what supports or counters this proposition, that is constituted by or accessible to sense experience or experimental procedure. Empirical evidence is of central importance to the sciences an ...
methods,
density functional theory Density-functional theory (DFT) is a computational quantum mechanical modelling method used in physics, chemistry and materials science to investigate the electronic structure (or nuclear structure) (principally the ground state) of many-body ...
, Hartree-Fock calculations, quantum
Monte Carlo Monte Carlo (; ; french: Monte-Carlo , or colloquially ''Monte-Carl'' ; lij, Munte Carlu ; ) is officially an administrative area of the Principality of Monaco, specifically the ward of Monte Carlo/Spélugues, where the Monte Carlo Casino is ...
methods, and
coupled cluster Coupled cluster (CC) is a numerical technique used for describing many-body systems. Its most common use is as one of several post-Hartree–Fock ab initio quantum chemistry methods in the field of computational chemistry, but it is also used in ...
methods. Understanding
electronic structure In quantum chemistry, electronic structure is the state of motion of electrons in an electrostatic field created by stationary nuclei. The term encompasses both the wave functions of the electrons and the energies associated with them. Electro ...
and
molecular dynamics Molecular dynamics (MD) is a computer simulation method for analyzing the physical movements of atoms and molecules. The atoms and molecules are allowed to interact for a fixed period of time, giving a view of the dynamic "evolution" of the ...
through the development of computational solutions to the
Schrödinger equation The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. It is a key result in quantum mechanics, and its discovery was a significant landmark in the development of the ...
is a central goal of quantum chemistry. Progress in the field depends on overcoming several challenges, including the need to increase the accuracy of the results for small molecular systems, and to also increase the size of large molecules that can be realistically subjected to computation, which is limited by scaling considerations — the computation time increases as a power of the number of atoms.


History

Some view the birth of quantum chemistry as starting with the discovery of the
Schrödinger equation The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. It is a key result in quantum mechanics, and its discovery was a significant landmark in the development of the ...
and its application to the hydrogen atom in 1926. However, the 1927 article of
Walter Heitler Walter Heinrich Heitler (; 2 January 1904 – 15 November 1981) was a German physicist who made contributions to quantum electrodynamics and quantum field theory. He brought chemistry under quantum mechanics through his theory of valence bond ...
(1904–1981) and
Fritz London Fritz Wolfgang London (March 7, 1900 – March 30, 1954) was a German physicist and professor at Duke University. His fundamental contributions to the theories of chemical bonding and of intermolecular forces (London dispersion forces) are today c ...
, is often recognized as the first milestone in the history of quantum chemistry. This is the first application of quantum mechanics to the diatomic hydrogen molecule, and thus to the phenomenon of the chemical bond. In the following years much progress was accomplished by
Robert S. Mulliken Robert Sanderson Mulliken Note Longuet-Higgins' amusing title for reference B238 1965 on page 354 of this Biographical Memoir. The title should be "Selected papers of Robert S Mulliken." (June 7, 1896 – October 31, 1986) was an American ph ...
,
Max Born Max Born (; 11 December 1882 – 5 January 1970) was a German physicist and mathematician who was instrumental in the development of quantum mechanics. He also made contributions to solid-state physics and optics and supervised the work of a n ...
,
J. Robert Oppenheimer J. Robert Oppenheimer (; April 22, 1904 – February 18, 1967) was an American theoretical physicist. A professor of physics at the University of California, Berkeley, Oppenheimer was the wartime head of the Los Alamos Laboratory and is oft ...
,
Linus Pauling Linus Carl Pauling (; February 28, 1901August 19, 1994) was an American chemist, biochemist, chemical engineer, peace activist, author, and educator. He published more than 1,200 papers and books, of which about 850 dealt with scientific top ...
,
Erich Hückel Erich Armand Arthur Joseph Hückel (August 9, 1896, Berlin – February 16, 1980, Marburg) was a German physicist and physical chemist. He is known for two major contributions: *The Debye–Hückel theory of electrolytic solutions *The Hückel m ...
,
Douglas Hartree Douglas Rayner Hartree (27 March 1897 – 12 February 1958) was an English mathematician and physicist most famous for the development of numerical analysis and its application to the Hartree–Fock equations of atomic physics and the c ...
,
Vladimir Fock Vladimir Aleksandrovich Fock (or Fok; russian: Влади́мир Алекса́ндрович Фок) (December 22, 1898 – December 27, 1974) was a Soviet Union, Soviet physicist, who did foundational work on quantum mechanics and quantum ...
, to cite a few. The history of quantum chemistry also goes through the 1838 discovery of
cathode rays Cathode rays or electron beam (e-beam) are streams of electrons observed in discharge tubes. If an evacuated glass tube is equipped with two electrodes and a voltage is applied, glass behind the positive electrode is observed to glow, due to el ...
by
Michael Faraday Michael Faraday (; 22 September 1791 – 25 August 1867) was an English scientist who contributed to the study of electromagnetism and electrochemistry. His main discoveries include the principles underlying electromagnetic inducti ...
, the 1859 statement of the
black-body radiation Black-body radiation is the thermal electromagnetic radiation within, or surrounding, a body in thermodynamic equilibrium with its environment, emitted by a black body (an idealized opaque, non-reflective body). It has a specific, continuous spect ...
problem by
Gustav Kirchhoff Gustav Robert Kirchhoff (; 12 March 1824 – 17 October 1887) was a German physicist who contributed to the fundamental understanding of electrical circuits, spectroscopy, and the emission of black-body radiation by heated objects. He coine ...
, the 1877 suggestion by
Ludwig Boltzmann Ludwig Eduard Boltzmann (; 20 February 1844 – 5 September 1906) was an Austrian physicist and philosopher. His greatest achievements were the development of statistical mechanics, and the statistical explanation of the second law of thermodyn ...
that the energy states of a physical system could be discrete, and the 1900 quantum hypothesis by
Max Planck Max Karl Ernst Ludwig Planck (, ; 23 April 1858 – 4 October 1947) was a German theoretical physicist whose discovery of energy quanta won him the Nobel Prize in Physics in 1918. Planck made many substantial contributions to theoretical p ...
that any energy radiating atomic system can theoretically be divided into a number of discrete energy elements ''ε'' such that each of these energy elements is proportional to the
frequency Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is eq ...
''ν'' with which they each individually radiate
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat a ...
and a numerical value called Planck's constant. Then, in 1905, to explain the
photoelectric effect The photoelectric effect is the emission of electrons when electromagnetic radiation, such as light, hits a material. Electrons emitted in this manner are called photoelectrons. The phenomenon is studied in condensed matter physics, and solid st ...
(1839), i.e., that shining light on certain materials can function to eject electrons from the material,
Albert Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theory ...
postulated, based on Planck's quantum hypothesis, that light itself consists of individual quantum particles, which later came to be called
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they always ...
s (1926). In the years to follow, this theoretical basis slowly began to be applied to chemical structure, reactivity, and bonding. Probably the greatest contribution to the field was made by
Linus Pauling Linus Carl Pauling (; February 28, 1901August 19, 1994) was an American chemist, biochemist, chemical engineer, peace activist, author, and educator. He published more than 1,200 papers and books, of which about 850 dealt with scientific top ...
.


Electronic structure

The first step in solving a quantum chemical problem is usually solving the
Schrödinger equation The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. It is a key result in quantum mechanics, and its discovery was a significant landmark in the development of the ...
(or
Dirac equation In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin- massive particles, called "Dirac part ...
in
relativistic quantum chemistry Relativistic quantum chemistry combines relativistic mechanics with quantum chemistry to calculate elemental properties and structure, especially for the heavier elements of the periodic table. A prominent example is an explanation for the color of ...
) with the
electronic molecular Hamiltonian In atomic, molecular, and optical physics and quantum chemistry, the molecular Hamiltonian is the Hamiltonian operator representing the energy of the electrons and nuclei in a molecule. This operator and the associated Schrödinger equation p ...
. This is called determining the electronic structure of the molecule. It can be said that the electronic structure of a molecule or crystal implies essentially its chemical properties. An exact solution for the Schrödinger equation can only be obtained for the hydrogen atom (though exact solutions for the bound state energies of the
hydrogen molecular ion The dihydrogen cation or hydrogen molecular ion is a cation (positive ion) with formula . It consists of two hydrogen nuclei (protons) sharing a single electron. It is the simplest molecular ion. The ion can be formed from the ionization of a ne ...
have been identified in terms of the generalized Lambert W function). Since all other atomic, or molecular systems, involve the motions of three or more "particles", their Schrödinger equations cannot be solved exactly and so approximate solutions must be sought.


Valence bond

Although the mathematical basis of quantum chemistry had been laid by Schrödinger in 1926, it is generally accepted that the first true calculation in quantum chemistry was that of the German physicists
Walter Heitler Walter Heinrich Heitler (; 2 January 1904 – 15 November 1981) was a German physicist who made contributions to quantum electrodynamics and quantum field theory. He brought chemistry under quantum mechanics through his theory of valence bond ...
and
Fritz London Fritz Wolfgang London (March 7, 1900 – March 30, 1954) was a German physicist and professor at Duke University. His fundamental contributions to the theories of chemical bonding and of intermolecular forces (London dispersion forces) are today c ...
on the hydrogen (H2) molecule in 1927. Heitler and London's method was extended by the American theoretical physicist
John C. Slater John Clarke Slater (December 22, 1900 – July 25, 1976) was a noted American physicist who made major contributions to the theory of the electronic structure of atoms, molecules and solids. He also made major contributions to microwave electroni ...
and the American theoretical chemist
Linus Pauling Linus Carl Pauling (; February 28, 1901August 19, 1994) was an American chemist, biochemist, chemical engineer, peace activist, author, and educator. He published more than 1,200 papers and books, of which about 850 dealt with scientific top ...
to become the valence-bond (VB) [or Heitler–London–Slater–Pauling (HLSP)] method. In this method, attention is primarily devoted to the pairwise interactions between atoms, and this method therefore correlates closely with classical chemists' drawings of chemical bond, bonds. It focuses on how the atomic orbitals of an atom combine to give individual chemical bonds when a molecule is formed, incorporating the two key concepts of orbital hybridization and resonance (chemistry), resonance.


Molecular orbital

An alternative approach was developed in 1929 by Friedrich Hund and
Robert S. Mulliken Robert Sanderson Mulliken Note Longuet-Higgins' amusing title for reference B238 1965 on page 354 of this Biographical Memoir. The title should be "Selected papers of Robert S Mulliken." (June 7, 1896 – October 31, 1986) was an American ph ...
, in which electrons are described by mathematical functions delocalized over an entire molecule. The Hund–Mulliken approach or molecular orbital (MO) method is less intuitive to chemists, but has turned out capable of predicting spectroscopy, spectroscopic properties better than the VB method. This approach is the conceptual basis of the Hartree–Fock method and further post Hartree–Fock methods.


Density functional theory

The Gas in a box, Thomas–Fermi model was developed independently by L. H. Thomas, Thomas and Enrico Fermi, Fermi in 1927. This was the first attempt to describe many-electron systems on the basis of electronic density instead of wave functions, although it was not very successful in the treatment of entire molecules. The method did provide the basis for what is now known as density functional theory (DFT). Modern day DFT uses the Kohn–Sham equations, Kohn–Sham method, where the density functional is split into four terms; the Kohn–Sham kinetic energy, an external potential, exchange and correlation energies. A large part of the focus on developing DFT is on improving the exchange and correlation terms. Though this method is less developed than post Hartree–Fock methods, its significantly lower computational requirements (scaling typically no worse than ''n''3 with respect to ''n'' basis functions, for the pure functionals) allow it to tackle larger polyatomic molecules and even macromolecules. This computational affordability and often comparable accuracy to Møller–Plesset perturbation theory, MP2 and Coupled cluster, CCSD(T) (post-Hartree–Fock methods) has made it one of the most popular methods in computational chemistry.


Chemical dynamics

A further step can consist of solving the
Schrödinger equation The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. It is a key result in quantum mechanics, and its discovery was a significant landmark in the development of the ...
with the total molecular Hamiltonian in order to study the motion of molecules. Direct solution of the Schrödinger equation is called ''Quantum dynamics, quantum dynamics'', whereas its solution within the Semiclassical physics, semiclassical approximation is called ''semiclassical dynamics.'' Purely Classical mechanics, classical simulations of molecular motion are referred to as ''
molecular dynamics Molecular dynamics (MD) is a computer simulation method for analyzing the physical movements of atoms and molecules. The atoms and molecules are allowed to interact for a fixed period of time, giving a view of the dynamic "evolution" of the ...
(MD)''. Another approach to dynamics is a hybrid framework known as ''mixed quantum-classical dynamics;'' yet another hybrid framework uses the Path integral formulation, Feynman path integral formulation to add quantum corrections to molecular dynamics, which is called path integral molecular dynamics. Statistical approaches, using for example classical and quantum Monte Carlo methods, are also possible and are particularly useful for describing equilibrium distributions of states.


Adiabatic chemical dynamics

In adiabatic dynamics, interatomic interactions are represented by single Scalar (physics), scalar potentials called potential energy surfaces. This is the
Born–Oppenheimer approximation In quantum chemistry and molecular physics, the Born–Oppenheimer (BO) approximation is the best-known mathematical approximation in molecular dynamics. Specifically, it is the assumption that the wave functions of atomic nuclei and elect ...
introduced by Max Born, Born and Robert Oppenheimer, Oppenheimer in 1927. Pioneering applications of this in chemistry were performed by Rice and Ramsperger in 1927 and Kassel in 1928, and generalized into the RRKM theory in 1952 by Rudolph A. Marcus, Marcus who took the
transition state In chemistry, the transition state of a chemical reaction is a particular configuration along the reaction coordinate. It is defined as the state corresponding to the highest potential energy along this reaction coordinate. It is often marked wi ...
theory developed by Henry Eyring (chemist), Eyring in 1935 into account. These methods enable simple estimates of unimolecular reaction rates from a few characteristics of the potential surface.


Non-adiabatic chemical dynamics

Non-adiabatic dynamics consists of taking the interaction between several coupled potential energy surface (corresponding to different electronic quantum states of the molecule). The coupling terms are called vibronic couplings. The pioneering work in this field was done by Ernst Stueckelberg, Stueckelberg, Lev Davidovich Landau, Landau, and Clarence Zener, Zener in the 1930s, in their work on what is now known as the Landau–Zener transition. Their formula allows the transition probability between two diabatic potential curves in the neighborhood of an avoided crossing to be calculated. Spin forbidden reactions, Spin-forbidden reactions are one type of non-adiabatic reactions where at least one change in Spin states (d electrons), spin state occurs when progressing from Reagent, reactant to Product (chemistry), product.


See also

* Atomic physics * Computational chemistry * Condensed matter physics * Car–Parrinello molecular dynamics * Electron localization function * International Academy of Quantum Molecular Science * Molecular modelling * Physical chemistry * List of quantum chemistry and solid-state physics software * QMC@Home * ''Quantum Aspects of Life'' * Quantum electrochemistry * Relativistic quantum chemistry * Theoretical physics *Spin forbidden reactions


References

* * * * * Gavroglu, Kostas; Ana Simões: ''Neither Physics nor Chemistry: A History of Quantum Chemistry'', MIT Press, 2011, * Karplus M., Porter R.N. (1971). ''Atoms and Molecules. An introduction for students of physical chemistry'', Benjamin–Cummings Publishing Company, * * * * * * * Considers the extent to which chemistry and especially the periodic system has been reduced to quantum mechanics. * *


External links


The Sherrill Group – Notes

ChemViz Curriculum Support Resources

Early ideas in the history of quantum chemistry
{{DEFAULTSORT:Quantum Chemistry Quantum chemistry,